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ABSTRACT: Based on the stratigraphic distribution of planktonic microfossils (mostly planktonic foraminifera) and abundance pat-
terns of benthic foraminifera we determine the temporal completeness of one land section and three wells through the Lower and Middle
Miocene Carapita Formation of eastern Venezuela, compare the extent of the hiatuses in the sections and document changes in
paleodepth at these localities during the early and Middle Miocene. We determine that changes in paleodepth are associated with hia-
tuses, but see no relationship with the global changes in sea-level inferred from deep sea isotope records. This strongly suggests that there
was a strong tectonic forcing on stratigraphic architecture at upper and middle bathyal depths, as to be expected in a tectonically active
area. However, similar stratigraphic patterns are also observed elsewhere, implying that a widespread tectonic structuring of the strati-
graphic architecture may have been operative. Recognition of hiatuses (not merely unconformities) as primary stratigraphic components
will make possible an uninterrupted documentation of sequences boundaries from subaerial to bathyal environments, and help determine
objectively the structural mechanism(s) operating on the genesis of stratigraphic sequences (sensu Catuneanu et al. 2009). Biostrati-
graphy (and biochronology) are the main tools to understanding this structuring.

INTRODUCTION

Sequence stratigraphy represents a considerable advance in the
description of the stratigraphic record. Designed to interpret
stratal successions within shallow water sequences as reflecting
changes in relative sea level history (Vail et al. 1977), or, as re-
cently agreed upon, changes in accomodation (Catuneanu et al.
2009) it has been less successful with the documentation of
deeper water sedimentary packages at basinal locations where
strata are conformable (i.e., concordant) across sequence
boundaries, in particular when delineated from seismic profiles.
This study is an opportunity to examine such deep-water suc-
cessions and test them for stratigraphic completeness in com-
plementarity to the sequence stratigraphic framework achieved
for correlative shallower water successions.

Cropping out over a large part of eastern Venezuela are 4500 to
6000 meters of the thick Lower to Middle Miocene Carapita
Formation (Hedberg 1937a; Pearson 1965) which has proved to
be a critical formation for the oil industry. It constitutes an im-
portant oil reservoir in the eastern part of the Anzoategui State
and also forms a main seal rock for an Oligocene oil reservoir
located in the north of Monagas State. Eastern Venezuela is a
structurally complex area, with numerous thrust faults causing
vertical repetitions of stratigraphic successions. To minimize
risks associated with drilling in such complex terranes, and also
reduce drilling time, the oil industry has relied intensely on
micropaleontology, and the biostratigraphic characterization of
the Carapita Formation which is a much-needed assistance in
oil exploration. Despite its crucial stratigraphic position, there
has been no integrated micropaleontologic study of the Carapita
Formation, only narrowly focused, albeit significant, studies.
The depositional history of this formation remains unknown in

terms of temporal completeness and poorly documented with
regard to bathymetry.

The objective of this study is to remedy this situation based on
an integrated biostratigraphic investigation using planktonic
and benthic foraminifera and complementary calcareous
nannofossil data. The formation has been analyzed at three se-
lected drilled sites and in the outcrop section along Rio Oregano
(Hedberg 1937a). The microfaunas are generally poorly pre-
served in the Carapita Shales, particularly in the drilled mate-
rial, however. We have circumvented this problem by
comparing microfaunas of the Carapita Formation with foram-
inifera from the abundant, well-preserved microfaunas of the re-
gionally equivalent Cipero Formation of South/central Trinidad
(Sanchez et al. 2014).

In this paper we 1) discuss the stratigraphy of the Carapita For-
mation, 2) demonstrate the occurrence of multiple hiatuses in
each section, 3) conduct a broad survey of inferred bathymetric
distributions of Neogene benthic foraminifera, and 4) combine
this information with the analysis of morphogroups as described
by Corliss and Chen (1988) and Corliss and Fois (1991). We
then integrate the paleobathymetric interpretation into the tem-
poral framework established for the four sections. We suggest
that in situ tectonics, not glacioeustasy, controlled the early
Neogene sedimentary history in the eastern Venezuela Basin.

GEOGRAPHIC AND GEOLOGIC AND SETTING

The area of interest in this study is eastern Venezuela between
the Gulf of Cariaco and the Gulf of Paria to the north and the
Maturin Basin to the south, and the southern island of Trinidad
(Text-fig. 1). This is a structurally complex area that has been
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TEXT-FIGURE 1

Geographic location of the study area. Left: General location of Venezuela and Trinidad (modified from Duerto 2007). Note: color versions of this figure
and others herein, are available online. In this figure, color denotes chonostratigraphic age (see inset).

extremely deformed during the oblique collision between the
South American and Caribbean Plates, producing a system of
blocks delineated by thrust faults (Text-fig. 2a, b). The Maturin
Basin of eastern Venezuela is delineated by two east-west
trending thrust systems, the Monagas Fold-Thrust belt to the
south and the Pirital thrust to the north (Hung 1997; Sanchez et
al. 2010). The latter divides into subparallel faults that affect
south Trinidad.

The stratigraphy of the Maturin Basin (Text-figs. 3, 4) reflects
four main episodes of tectonic history whose timing is debated
(Eva et al. 1989; Erikson and Pindell 1993; Parnaud et al. 1995;
Yoris and Ostos 1997; Di Croce et al. 1999; Jacome et al. 2003;
CEV 2005; Higgs 2009). Paleozoic pre-rifting and Jurassic to
Early Cretaceous rifting were followed by an episode of tec-
tonic quiescence as a passive margin became established in the
north of Venezuela during the Cretaceous. The duration of this
episode is controversial, either > 140 Myr (until Eocene,
Erikson and Pindell 1993) or just a few million years (Higgs
2009). The oblique collision between South American and the
Caribbean plates resulted in a change of the structural regime to
an active margin, resulting in early Neogene turbiditic sedimen-
tation (Duerto 2007; Sanchez et al. 2007). The Carapita Forma-
tion, which is part of the Merecure Group, was deposited in an
extensive deep-water basin during Late Oligocene to Middle
Miocene (Text-figs. Sa, b). In the stratopypic area as well as in

the Maturin Basin the Carapita Formation is, essentially, a ho-
mogeneous foraminiferal shale (Hedberg 1937a, b). The shales
are dark gray and ferruginous, sometimes finely micaceous and
with subconchoidal fracture. The carbonate content is generally
low. The formation overlies the Upper Oligocene Naricual For-
mation (Hedberg and Pyre 1944) and underlies the Upper Mio-
cene La Pica Formation. The lower boundary is a transitional
contact. The upper boundary is unconformable (Text-fig. 4).

MATERIALS AND METHODS

A total of 228 samples have been examined in this study: 121
cutting samples from the Carapita Formation in exploration
wells; 67 outcrop samples from the Carapita Formation; and 19
outcrop samples from the Cipero Formation for reference. All
samples analyzed are listed in Table 1.

We describe below the sections analyzed in this work and the
methodology used. Sample processing, taxonomic framework
and biozonal characterization based on the Cipero Formation
are discussed in Sanchez et al. (2014).

Sections

Three wells and one land section in the Eastern Venezuela Basin
are examined here (Text-figs 1, 2a). The three PDVSA explora-
tion wells are situated between the Pirital and Tropical Oilfieds.
Because well data are proprietary, neither the full names of the



GUANOCO
]

—z—=

TROPICAL
OILFIELD

TRAVI
OILFIELY

PIRITAL w
OILFIELD

-
==
5
w
——

TEXT-FIGURE 2a

Location of the three wells (WA, WB, WC, Eastern Venezuela Basin.
Geographical location (modified from Codigo Geologico de Venezuela,
PDVSA-INTEVEP 2005).

wells nor their exact geographic coordinates in the northern part
of the Monagas State are given. They are referred to here as
Wells A, B, C.

Well A (WA) was drilled in 2004 to a total depth (TD) of
21,838ft (~6617.5m). Located 10km southwest of WA, Well B
(WB) was drilled in 2008 to a TD of 16,7311t (~5070m). Well C
(WCQC), also drilled in 2008 to a TD of 14,080ft (~4267m) is lo-
cated 25km southwest of WB. The lithostratigraphic succession
is the same in the three wells (Text-fig. 4) and as follows (from
top to bottom): Mesa/Las Piedras (Plio-Pleistocene), La Pica
(Pliocene), Carapita (Oligo-Miocene), Naricual (Oligocene),
Areo (Oligocene), and Los Jabillos (Oligocene) Formations.

As a result of the Pirital thrust, the Carapita to Los Jabillos part
of the succession is repeated below the Los Jabillos Formation,
which is then underlain by the Vidofio (Eocene), and Caratas
(Paleocene) Formations (Text-fig. 2b). The Carapita Formation
is conveniently and informally subdivided into three units:
Carapita 1 is the more superficial, overlying the Pirital thrust;
Carapita 3 is the deepest. The shales of Carapita 2, below the
Pirital thrust fault, are generally older (Zones N4-N6 [M1-3])
than those of Carapita 1 (which are essentially Zone N6 [Zone
M3] and younger; see above) (PDVSA Internal Report; 2006,
2010). This study is only concerned with Carapita 1 recovered
above the Pirital thrust. It is 7,735ft (~2343m) thick in WA,
9,760ft (~2957.5m) in WB, and 6,490ft (~1967m) in WC. Only
cuttings samples, generally taken at intervals of ~100 feet
(~30m), were available from these drilled wells (no side wall
samples were taken from the Carapita Formation).

The 111m thick section that crop out along the Rio Oregano
(Lat.: 10° 94’ to 10° 99’ N; Long.: 64° 43° W) was collected by
one of us (DS, April 2009) at ~Im intervals (Text-fig. 6). The
exposures are almost continuous along the river, but with two
large vegetation-covered intervals, from 44 to 60m and from 64
to 70m as measured from the base of the section. The Rio Oreg-
ano section is located East of the Carapita stratotype section on
Quebrada Carapita (north of Santa Ines). It is not as complete as
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TEXT-FIGURE 2b

Location of the three wells (WA, WB, WC, Eastern Venezuela Basin.
Location in a simplified structural framework of the studied area (from
PDVSA, Internal Report 2009). Note the repetition of the stratigraphic
succession below the Pirital thrust. In this study only the shales of the
Carapita Formation overlying the Pirital thrust are considered.

the stratotype section (Hedberg 1937a, b), but access to the
latter has become extremely difficult and dangerous. It was im-
portant to study a normal stratigraphic succession on land be-
cause it served as a control to assess the quality of the data in the
wells (e.g., determine the absolute abundance of the
foraminifera in the formation), and it strengthened our strati-
graphic and temporal interpretation of the wells. Also a
paleobathymetric analysis would have been meaningless using
cutting samples alone.

Biozonal and biochronological framework

Planktonic and benthic foraminifera provided the main strati-
graphic control in the initial study of the wells, with comple-
mentary data from calcareous nannofossil (PDVSA Internal
Report; 2006, 2010). The distributions of all marker species of
planktonic and benthic foraminifera identified in each well have
been revised as part of this study and are documented separately
(Sanchez et al. 2014; see Appendix a, b herein). Taxonomic
identification was considerably aided by comparison with
foraminiferal assemblages in Lower and Middle Miocene
biozones from the Cipero Formation of Trinidad. Of the 19
samples carefully examined, five were selected for the high
quality of preservation of their planktonic foraminiferal assem-
blages. They served, both, as a taxonomic and a biostratigraphic
reference, each sample best representing a biozone (Text-fig. 7).

The biozonal interpretation in this study is based on the
biozonal frameworks and stratigraphic ranges in Kennett and
Srinivasan (1983), Bolli et al. (1985) and Berggren et al. (1995)
for planktonic foraminifera, and Martini (1971) for calcareous
nannofossils. In addition the Highest Occurrences (HO) and,
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TEXT-FIGURE 3

Simplified chronostratigraphic chart of the Eastern Venezuela Basin (modified from Duerto 2007). Note that the Carapita/La Pica formational contact is

unconformable. The hiatus is short and not represented.

when possible, the Lowest Occurrences (LO) of strati-
graphically useful taxa other than the biozonal markers were
carefully delineated.

The biostratigraphic resolution achieved in this study is notably
greater in the Rio Oregano section (sampled at 1m interval)
than in the wells (sampled at ~30m interval). Unlike outcrop
samples collected at specific levels, cutting samples represent a
mixture of microfaunas from the actual level being drilled and
also from overlying horizons. We were therefore careful in re-
lying mostly on the HOs of taxa in these wells. The use of (ad-
mittedly approximately) LOs of O. universa, O. suturalis and P.
sicana is based on the fact that no specimens of these taxa were
found at lower depths (see below). The same stratigraphic rela-
tionship between these taxa and the HO of S. heteromorphus in
the Rio Oregano outcrop section as in the wells supports our use
of these markers. The same observation applies to the LO of
calcareous nannoplankton S. belemnos (see below).

Interestingly, there was no indication of reworking or downhole
contamination in the wells.

We apply the time scale of Berggren et al. (1995). Planktonic
foraminiferal biochronology has been updated in Wade et al.
(2011) but most of the Lower Miocene datums remain un-

changed (Table 2). The Neogene calcareous nannoplankton
biochronology in Lourens et al. (2004) and in Gradstein et al.
(2012) has been recalibrated to the GPTS of Cande and Kent
(1995). Age differences between datums in the two time scales
are small (<150 kyr) except for two datums used here, either be-
cause of poor calibration (Sphenolithus belemnos) or because of
magnetostratigraphic misinterpretation (Helicosphaera ampli-
aperta).

Stratigraphic and temporal interpretations

It is well known that the stratigraphic record is highly discontin-
uous (e.g., Ager 1993; Miall 2010) and diverse methodologies
(e.g., graphic correlation, strontium isotope stratigraphy) are
available to decipher the presence of unconformities in strati-
graphic sections. We use here the methodology explained by
Aubry (1995) which is designed to 1) delineate unconformities,
2) date their two surfaces, and 3) determine the encompassing
hiatus. Overlap between hiatuses in different sections consti-
tutes a means of determining the timing of the causal mecha-
nism responsible for the development of correlative
unconformities thus providing a test to global mechanisms
(such as glacio-eustasy) (Aubry 1991).

The methodology relies on the comparison of the thicknesses of
stratigraphic units with their duration (e.g., biozones with



biochrons, magnetozones with magnetochrons, etc.). An earlier
attempt at conducting magnetostratigraphy on outcrop sections
in eastern Venezuela proved unsuccessful (Berggren and Kent
1995, unpublished data). Poor preservation of foraminifera pre-
vented the application of stable isotope stratigraphy to refine
the biostratigraphy on the Rio Oregano section. Therefore only
biostratigraphy is available here.

In continuous sections the thicknesses of biozones are propor-
tional to the durations of corresponding biochrons, and evolu-
tionary events (First Appearance Datum [FAD] and Last
Appearance Datum [LAD]) are recorded sequentially in the
sections. In discontinuous sections FADs and LADs that oc-
curred hundred of thousands to million years apart are regis-
tered at the same stratigraphic level (or unrecorded when the
hiatus is too long). The greater the number and diversity of
bioevents the more accurate the location of unconformities is
(see Aubry 1995, figs. 4, 5). Once the sedimentation rate curve
is established and the rates of sedimentation determined, the
ages of the unconformable surfaces can be calculated by extrap-
olation. However, when sections are too discontinous or events
too few, the ages of surfaces can be estimated, not calculated.
This introduces a known uncertainty in the temporal interpreta-
tion. In this work we place greater confidence in the interpreta-
tion of the Middle Miocene than in the Lower Miocene interval,
because a greater number of biostratigraphic data are available
for the Middle Miocene than the Lower Miocene. The temporal
interpretation proper consists in mapping the time represented
by stratigraphic units in a given area. It is the means to truly
consider time as the fourth dimension in stratigraphic analysis.

Paleobathymetry

Benthic foraminifera have previously helped determine the
depositional depth of the Carapita Formation (Saint Marc 1988;
De Cabrera and De Macquhae 1990). From a study of thirty
five (35) wells drilled in the eastern Venezuela Basin and using
biofacies defined on the basis of consistently co-occurring taxa,
the latter authors concluded that Early Miocene deposition oc-
curred at middle to lower bathyal depths (600—2000m) and
Middle Miocene sedimentation at upper bathyal (200—600m)
depths (bathymetric zones of Van Morkhoven et al. 1986).

Several multivariate techniques such as Factor Analysis (Imbrie
and Purdy 1962), Principal Components Analysis (McGowran
1968), Cluster Analysis (Bonham-Carter 1965; Parks 1966),
have proven useful to manipulate large amount of data and to
extract the significance of data obtained from hundreds of anal-
yses. Benthic foraminifera are not abundant in the Carapita For-
mation (nor are they in the Cipero Formation). At most levels
the total number of benthic foraminifera recovered from the
washed residue of 100 g of rock was <100 specimens (Text-fig.
8). To obtain the 300 specimens of benthic foraminifera re-
quired for statistical analysis it would have been necessary to
wash much larger amounts of rocks (~500 g) and picking would
have required an inordinately long time. We thus turned to two
other methodologies—a general survey of the paleobathymetry
inferred in previous studies for the benthic taxa encountered in
this study, and morphotype analysis of calcareous benthic
foraminifera. It was also inappropriate to use Chi-square analy-
sis for this study, because the species inventory in the Cipero
and the Carapita Formations were largely different.

We also analyzed benthic foraminiferal assemblages from 19
samples from the Cipero Formation. This formation is well
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TEXT-FIGURE 7
Biostratigraphic ranges of selected planktonic foraminifera in the Cipero
Formation, Trinidad.

known to represent a deep-water (lower bathyal) facies
(Stainforth 1948) and thus constitutes a reference against which
to compare the assemblages from the Carapita Formation.

Literature survey

We used the bathymetric distributions inferred by Van Mork-
hoven et al. (1986) for calcareous benthic foraminifera and by
Kaminski and Gradstein (2005) for agglutinated foraminifera.
For taxa that were not considered in these two studies, we col-
lected information from Hedberg (1937b), Cushman and Renz
(1945), Renz (1948), Phleger and Parker (1951), Bandy (1967),
Whittaker (1988), and Robertson (1988).

Morphotype analysis

Benthic foraminifera live both at the surface of sediments and
in the sediments in which their distribution is stratified (Thiel
1975; Corliss 1985; Gooday 1986, Corliss and Emerson 1990).
The shape and mode of coiling of the test and the distribution of
pores on its surface (three characters that define morphotypes)
were shown by Corliss and Chen (1988) to be indicative of the
microhabitats in which benthic foraminifera live. These authors
described four epifaunal and five infaunal morphotypes
(Text-fig. 9), morphotypes that were related to water depth hab-
itat by Corliss and Fois (1991) using the database of Recent
benthic foraminifera in the Gulf of Mexico (Phleger 1951).
These authors established that the percentages of different
morphotypes are indicative of different depths (Table 3a, b).
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Absolute abundance of foraminifera in 100 g-samples collected from the
Carapita Formation in the Rio Oregano outcrop section. Although no
samples were barren, note the low abundance of the planktonic
foraminifera at all levels except at level 8m. Agglutinated foraminifera
occur throughout the section but represent only a small percent of the
benthic foraminifera.

Many of the species of benthic foraminifera encountered in the
Carapita Formation are extant and occur in the Gulf of Mexico.
This warrants our use of modern day bathymetric distribution of
morphotypes to infer paleobathymetry during the early and
middle Neogene in the southern Caribbean. Extinct taxa were
assigned to a morphotype following the criteria delineated by
Corliss and Chen (1988) (Table 3a, b). Our histograms of spe-
cies composition show obvious differences between the two for-
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EPIFAUNAL

Milioline M4 Biconvex, trochospiral

INFAUNAL

Spherical MO Flattened ovoid

TEXT-FIGURE 9

Morphotypes recognized among the benthic foraminifera occurring in the Carapita and Cipero Formations (the morphotypes are those described by
Corliss and Chen 1988 and Corliss and Fois 1991). Epifaunal morphotypes have surface pores present only on one side of the test and the foraminifera
live on or above the sediment. Infaunal morphotypes usually have pores on both sides of the test. Morphotypes are symbolized here by the following taxa:
M1: Gyroidinoides altiformis; M2: Planulina renzi; M3: Quinqueloculina seminula; M4: Neoeponides umbonatus; M5: Melonis pompilioides; M6:
Uvigerina rugosa; M7: Bolivina imporcata; M8: Globocassidulina subglobosa; M9: Lenticulina calcar.
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TEXT-FIGURE 10

0-30m; middle neritic: 30—100m; outer neritic: 100-200m; upper bathyal: 200-600m; middle bathyal: 600—1000m; lower bathyal: 1000-2000m.

Distribution of selected planktonic foraminiferal species in the Cipero Formation, Rio Oregano. Contacts between the Carapita Formation and the
Naricual (below) and La Pica (above) Formations are not accesible in the field because of vegetation cover. Paleobathymetry is as follows: inner neritic:
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Distribution of selected planktonic foraminiferal (this work) and calcareous nannofossil (PDVSA Internal Report 2006) species in the Carapita Forma-

TEXT-FIGURE 11
tion, Well A (WA).

Fourteen (14) species belonging to seven (7) genera of plank-

mations considered here, and suggest significant differences in

paleodepth.

tonic foraminifera have been recorded in the 111m thick Rio
Oregano outcrop section (Text-fig. 10). Planktonic foraminifera
indicative of Early Miocene to Early Pliocene ages occur

RESULTS

throughout. These are Globigerinella obesa, Paragloborotalia

siakensis, Dentoglobigerina venezuelana, D. altispira, D,

altispira globosa,

Biostratigraphy

Globoquadrina dehiscens and Globi-

gerinoides trilobus. Globorotalia peripheroronda occurs be-

tween 42 to 62m.

Rio Oregano section

Exceptionally, in order to facilitate comparison with the
biostratigraphy of the wells, the biozonal contents of this land
section is described in descending stratigraphic order.

The biozonal age of the upper part of the section is indetermi-

nate for lack of marker species. The youngest markers in the
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section are the LOs of Orbulina universa and O. suturalis at
60m. These define the base of Zone N9/M6, which, because of
the sampling gap between 60 and 44 m, is imprecisely posi-
tioned between these levels. The interval between 44 and 27 m,
27 and 25 m, and 25 to 15m are assigned to Zones N8/MS5,
N7/M4 and N6/M3, respectively.

Planktonic foraminifera exhibit poor to moderate preservation
and their abundance is variable in Zone N8/M5. The LO of
Globigerinoides bisphericus is recorded at 26m; on this basis
the N7/N8 zonal boundary is placed between levels 26 and 25m
(Text-fig. 10). The lower boundary of Zone N7/M4 is placed
between 24 and 25m based on the HO of Catapsydrax dissimilis
at 24m. The HO of the calcareous nannofossil Sphenolithus
belemnos is also located at 24 m, indicating that the NN3/NN4
zonal boundary occurs between samples 24 and 26m (O. Rodri-
guez, pers. communication, August 2010, and PDVSA Internal
Report 2010). There is thus good agreement between plank-
tonic foraminiferal and calcareous nannofossil biostratigraphy
(Berggren, et al. 1995).

Well A (WA), Travi Oilfield

Twenty two (22) species belonging to twelve (12) genera of
planktonic foraminifera were identified in WA (Text-fig. 11)
between 2300 and 9740ft (~697m — ~2951.5m). Long ranging,
Early Miocene to Early Pliocene planktonic foraminifera occur
throughout this 7735ft (~2344m) thick section: Globigerinella
obesa, G. praesiphonifera, Paragloborotalia siakensis, Dento-
globigerina venezuelana, D. altispira, D. altispira globosa,
Globorotalia  scitula,  Globoquadrina  dehiscens, and
Globigerinoides trilobus. Sphaeroidinellopsis seminulina oc-
curs between 2300 and 5510ft (~697m — ~1670m) only, and
Globorotalia peripheroronda between 5660 and 6775ft
(~1715m —~2053m). Biozonal assignment of the Carapita For-
mation above 6,240ft (~1891m) is indeterminate. In general,
planktonic foraminifera exhibit poor preservation and in some
intervals tend to be internally pyritized (2450ft— 2900ft; ~742m
— ~879) or glauconitic (4390ft — 4650ft; ~1330m — ~1409m).
The HOs of Orbulina universa and Orbulina suturalis
(Text-fig. 11) are located at 2300ft (~697m), and their LOs at
6240ft (~1891m). The lower boundary of Zone N9/M6 is thus
placed between 6240ft and 6390ft (~1891m — ~1936m). This is
well supported by the HO of (calcareous nannofossil)
Helicosphaera ampliaperta at 6390ft (~1936m), the LAD of
this taxon being very close to the FADs of Orbulina universa
and Orbulina suturalis (see Berggren et al. 1995).

The formation is divided into five biozones below 6240ft
(~1891m), from lower Middle Miocene Zone N8/M5 between
6240ft and 7040ft (~1891m —~2133m) to Lower Miocene Zone
N6/M3(?) between 7380ft and 7820ft (~2236m — ~2370m),
Zone N5/M2 between 78201t and 8430ft (~2370m — ~2554.5m)
and (questionable) Upper Oligocene Zone O7 between 9340ft
and 9740ft (~2830m — 2951.5). Abundance and preservation of
planktonic foraminifera vary from poor to moderate in Zone
N8/MS5. The HOs of Globigerinoides bisphericus and
Praeorbulina sicana are at 6390ft (~1936m), their LOs at
7040ft (~2133m). The lower boundary of Zone N8/N7 is thus
between 7040 and 7220ft (~2133 — ~2178m). The HO of
Globorotaloides stainforthi at 7380ft (~2236m) indicates the
lower boundary of Zone N7/M4 (Text-fig. 11). Calcareous
nannofossil data in this interval are very poor and indicative of
a broad Early to Middle Miocene age (PDVSA Internal Report
2006). Poor preservation and few planktonic foraminifera char-

12

acterize the N6/M3 zonal interval. The HO of Globigerinoides
altiaperturus is at 7380ft (~2236m) and its LO at 7820ft
(~2370m). The lower boundary of Zone N6/N3 is between 7820
and 8150ft (~2370m — ~2470m; Text-fig. 11).

Planktonic foraminiferal assemblages are poor to moderate with
low abundance and diversity in the N5/M2 zonal interval. The
occurrences of Cassigerinella chipolensis between 9340 to
9740ft (~2830m — ~2951.5m) and Sphenolithus delphix at
9740ft (2951.5m) indicates that this interval is Upper
Oligocene. Cassigerinella chipolensis was used as a datum
event (FAD at 33.65 Ma) by Berggren et al (1995). Only the cal-
careous nannofossil Helicosphaera recta (Upper Oligocene to
Lowermost Miocene) was reported from the interval 92001t to
9210ft (~2788 —2791m) (PDVSA Internal Report 2006).

Well B (WB), Orocual Oilfield

Fourteen (14) species of nine (9) genera of planktonic
foraminifera were identified (Text-fig. 12). Three (3) species of
calcareous nannofossils were reported (PDVSA Internal Report
2006). Planktonic foraminifera indicative of Lower Miocene to
Lower Pliocene occur between 2100 to 11310ft (~636m —
~3427m). These are Globigerinella obesa, Paragloborotalia
siakensis, Dentoglobigerina venezuelana, D. altispira, D. alti-
spira globosa, Globoquadrina dehiscens and Globigerinoides
trilobus (Text-Fig. 12). Globorotalia scitula only occurs be-
tween 2350 to 8640ft (~712m — ~2618m).

No biozonal assignment is possible for the interval between
2100ft and 7410ft (~636m — ~2245m) in which planktonic
foraminifera show poor preservation. The HOs of Orbulina
universa and Orbulina suturalis are located at 2100ft (~636m);
the LO of O. universa is at 7410ft (~2245m), that of O.
universalis at 4890ft (~1481m). The lower boundary of Zone
N9/M6 is thus placed between 7410ft and 7620ft (~2245m —
~2309m). The HO of the calcareous nannofossil Helicosphaera
ampliaperta is at 7410ft (~2245m) implying that the NN4/NN5
zonal boundary occurs between 7410 and 7610ft (~2245m —
~2307m; PDVSA Internal Report 2008), which supports our
biozonal determination (see well WA, above).

The interval between 7620 and 11220ft (~2309m —~3427m) be-
longs to three biozones, from lower Middle Miocene Zone
N8/MS5 between 7410ft and 8210ft (~2245m to ~2489m),
Lower Miocene Zone N7/M4 (8210ft — 9600ft; ~2489m to
~2909m), to undifferentiated Zones N6/M3 to N5/M2 (96001t
to 11310ft; ~2909m to ~3427m). The preservation of planktonic
foraminifera is poor to moderate and their abundance is variable
in the N8/MS5 zonal interval. The HOs of Globigerinoides
bisphericus and Praeorbulina sicana are located at 7620ft
(~2309m), and their LOs at 8210ft (~2489m; Text-fig. 12). The
lower boundary of Zone N8/N7 is thus placed between 82101t
and 8380ft (~2489m — ~2539m). The HO of Globorotaloides
stainforthi at 9600ft (~2909m) implies that the lower boundary
of Zone N7/M4 occurs between 9600ft and 98001t (~2009m —
~2967m; Text-fig. 12). Calcareous nannofossil data for this in-
terval are very poor and indicative of an Early to Middle Mio-
cene age (PDVSA Internal Report 2006). Poor to moderate
preservation and low abundance of planktonic foraminifera
characterize the N6/M3 zonal interval. The HO of (calcareous
nannofossil) Sphenolithus belemnos is at 11310ft (~3427m) im-
plying that the NN3/NN4 zonal boundary occurs between
11310ft and 114001t (~3427m and ~3454.5m) (see Berggren et
al. 1995).
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Distribution of selected planktonic foraminifera (this work) and calcareous nannofossil (PDVSA Internal Report 2008) species in the Carapita Forma-

TEXT-FIGURE 12
tion, Well B (WB).
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Distribution of selected planktonic foraminiferal species (this work) in the Carapita Formation, Well C (WC).

TEXT-FIGURE 13

Dentoglobigerina altispira globosa occurs only between 82401t

Well C (WC), Tropical Oilfield

to 107501t (~2497m —~3257.5m) and Globoquadrina dehiscens

between 80001t to 83901t (~2424 — ~2542m).

Nine (9) genera and fifteen (15) species of planktonic

foraminifera were identified in WC (Text-fig. 13). Long rang-
ing, Early Miocene to Early Pliocene planktonic foraminifera
occur in WC between 4380ft and 9200ft (~1327m — ~2788m),

No biozonal assignment is possible for the upper part (43801t to
7850ft; ~1327m to ~2388m) of the 64901t (~1967m) thick sec-

tion through the Carapita Formation. The HOs of Orbulina

such as Paragloborotalia siakensis, Dentoglobigerina vene-

zuelana, Globorotalia scitula, and Globigerinoides trilobus.
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Stratigraphic interpretation of the lower to middle Miocene section
from Rio Oregano (RO).
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TEXT-FIGURE 14
Stratigraphic interpretation of the Carapita Formation, Rio Oregano outcrop section. See Text-fig. 21 for the stratigraphic ranges of benthic foraminifera.
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TEXT-FIGURE 15
Stratigraphic interpretation of the Carapita Formation, Well A (WA), Travi Oilfield. See Text-fig. 22 for the stratigraphic ranges of benthic foraminifera.
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TEXT-FIGURE 16
Stratigraphic interpretation of the Carapita Formation, Well B (WB), Orocual Oilfield. See Text-fig. 23 for the stratigraphic ranges of benthic

foraminifera.
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Stratigraphic interpretation of the Carapita Formation, Well C (WC), Tropical Oilfield. See Text-fig. 24 for the stratigraphic ranges of benthic

foraminifera.

universa and O. suturalis are located at 5020ft (~1521m), and
the LO of O. universa at 80001t (~2424m). The lower boundary
of Zone N9/M6 is thus placed between 8000ft and 8390ft
(~2424m — ~2542m). Based on the HO of (calcareous nanno-
fossil) Helicosphaera ampliaperta at 8240ft (~2497m), the
NN4/NN5 zonal boundary occurs between 8000 and 8240ft
(~2424m — ~2497m), supporting the biozonal determination
based on planktonic foraminifera (see above).

18

The interval between 8000 and 9200ft (~2424 — ~2788m) in the
well is assigned to lower Middle Miocene Zone N8/MS5 (8000 —
8390ft; ~2424 — ~2542m), Lower Miocene Zone N7/M4
(8390ft — 9200ft, ~2542m — ~2788m) and Zone N6/M3? —
N5/M2? (9200ft — 10410ft, ~2788m — ~3154.5m). Abundance
and preservation of planktonic foraminifera vary from poor to
moderate in the N8/MS5 zonal interval. The HOs of
Globigerinoides bisphericus and Praeorbulina sicana are lo-
cated at 8000ft (~2424m), and their LOs are at 8390ft



Stratigraphy, vol. 11, no. 1, 2014

BATHYMETRY

o]

14 | Globocassidulina subglobosa

15 Guttulina irregularis
16 Guttulina jarvisi

17 Hanzawaia ammophila
18 Hanzawaia mantaensis
19 Laticarinina pauperata
20 Lenticulina calcar
21 Melonis pompilioides
22 Planulina renzi

23 | Rectuvigerina multicostata

24 Rectuvigerina striata

25 Rectuvigerina transversa

26 Siphonina pozonensis

27 Sphaeroidina bulloides

28 Uvigerina carapitana
29 Uvigerina mexicana
30 Uvigerina rugosa

SPECIES e
INNNER | MIDDLE
30 100
1 Bolivina floridana
2 Bolivina pisciformis
3 Buliminella elegans
4 Bulimina inflata
5 Bulimina macilenta
6 Bulimina pupoides
7 Chilostomella ovoidea
8 Cibicidoides alazanensis
9 Cibicidoides compressus
10 Cibicidoides crebbsi
11 Cibicidoides incrassatus
12 *Cyclammina cancellata
13 *Dorothia brevis

BATHYAL

UPPER | MIDDLE | I |
200 600 1000 2000 3000

ABYSSAL

TEXT-FIGURE 18

Bathymetric distribution of the benthic foraminiferal species occurring in both the Cipero and the Carapita Formations. (Bathymetry according to Van

Morkhoven et al. 1986). *Agglutinated benthic foraminifera.

(~2542m). The lower boundary of Zone N8/N7 is thus placed
between 8390ft and 8690ft (~2542m — ~2633m). The HO of
Globorotaloides stainforthi at 9200ft (~2788m) characterizes
the lower boundary of Zone N7/M4 between 9050ft and 92001t
(~2742m — ~2788m). Based on the HO of Sphenolithus
belemnos at 9410ft (~2851.5m) the NN3/NN4 zonal boundary
occurs between 9210ft and 9410ft (~2791m — ~2851.5m)
(Text-fig. 13), supporting as in other wells the delineation of the
base of Zone N7/M4. Planktonic foraminifera are poorly to
moderately preserved in the lower part of the formation. Based
on the HO of Globigerina ciperoensis at 10410ft (~3154.5m)

the lower boundary of Zone N6/NS5 is placed between 10270ft
and 10410ft (3112m — ~3154.5m).

Temporal interpretations of sections
Rio Oregano section

An unconformity is clearly present at ~25m as shown by the
juxtaposed HOs at 24m of S. belemnos (LAD at 18.1 Ma) and C.
dissimilis (LAD at 17.62 Ma) and the LO of G. bisphericus
(FAD at 16.4 Ma) at 26m. The NN3/NN4 and N6/M3-N7/M4
zonal contacts are thus unconformable (Text-fig. 14). The ages
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Bathymetric distribution of the benthic foraminiferal species occurring in the Cipero Formation and not in the Carapita Formation. (Bathymetry accord-

ing to Van Morkhoven et al. 1986). *Agglutinated benthic foraminifera.

of the surfaces of the unconformity cannot be determined pre-
cisely in the absence of a sufficient number of biostratigraphic
events to constrain them through sedimentation rates. The
lower surface is >18.1 Ma but younger than 20.5 Ma (LAD G
alitiaperturus); the upper surface is <164 Ma (FAD G
bisphericus) but >14.87 Ma (LAD H. ampliaperta). We tenta-
tively date the lower surface at 19 Ma and the upper surface at
16 Ma.

The absence of overlap between the upper range of H.
ampliaperta (LAD 14.87 Ma) and the lower range of O.
universa (FAD 15.10 Ma) implies the occurrence of an uncon-
formity at ~ 30m. The lower surface is >15.10 Ma and < 16.4
Ma (FAD G bisphericus). The upper surface is <14.87 Ma but
we have no means of determining a minimum date for it. We
tentatively date the lower surface at 15.20 Ma, and arbitrarily
date the upper surface at 13 Ma. This is not an entirely arbitrary
determination. The cosmopolitan, solution resistant species
Sphenolithus heteromorphus (LAD 13.49 Ma) was recovered in
WB. We take its absence from the section as indicating that
Zone NNS5 is part of the stratigraphic gap at ~30m.

Well A (WA), Travi Oilfield

The sedimentary interval between 7380ft (~2237m) and 92001t
(~2788m) is very difficult to interpret in the absence of plank-
tonic foraminiferal markers. The HOs of the Oligocene-lower-
most Miocene species H. recta (9200ft; ~2788m) is
anomalously correlative with the base of Zone NN3 at 9200ft
(~2788m). This and the juxtaposed HOs of four species of ben-
thic foraminifera at 9160ft (~2776m) (Text-fig. 15) suggest the
occurrence of an unconformity between 9160ft and 9200ft
(~2776m — 2788m). It is tentatively placed at 9160ft (~2776m).
The hiatus is very difficult to determine. The lower surface is
estimated at 23 Ma, based on the occurrence of S. delphix at
9660°-9670° (2927 m-2930m) (Text-fig. 11). The range of this
species slightly predates the Oligocene/Miocene boundary
(Shackleton et al. 2000). The upper surface is estimated at 19.5
Ma, based on the FAD of S. belemnos at ~19.3 Ma.

20

An intra Lower Miocene unconformity is inferred at level
~7380ft (~2236m) marked by the juxtaposed HOs of G
altiaperturus (LAD at 20.5 Ma), G. stainforthi (LAD at 17.62
Ma) and LO of S. belemnos (FAD at 18.1 Ma). The NN3/NN4
and N6/M3-N7/M4 zonal contacts are thus unconformable
(Text-fig. 15). The lower surface of the unconformity is > 20.5
Ma. It is arbitrarily estimated at 21 Ma. The upper surface of
the unconformity is >17.62 Ma. It is estimated at 18.1 Ma.

In continuous sections an overlap occurs between the upper
range of H. amplaperta and the lower range of O. suturalis. The
absence of such an overlap in Well A suggests that an uncon-
formity between 6398ft and 6240ft truncates the ranges of the
two species (as in the Oregano section). The unconformity is
arbitrarily placed at 6315ft (1914m). The hiatus >230 kyr, is
extremely difficult to determine. The lower surface of the un-
conformity is >15.10 and <16.4 Ma (FAD P. sicana). The upper
surface is <14.74 Ma but, as in the Oregano section there is no
means to constrain a minimum date. The lower surface is esti-
mated at 15.3 Ma and the upper surface is estimated at 13 Ma
based on the same logic as for the Rio Oregano.

Well B (WB), Orocual Oilfield

A Lower Miocene unconformity is inferred at ~ 11260ft
(~3412m) from the correlation of the NN3/NN4 and M2/M3
zonal boundaries (Text-fig. 16). The hiatus is difficult to deter-
mine. The upper surface of the unconformity may be estimated
at 18.6 Ma through extrapolation of a sedimentation rate of
~47cm/10° yr calculated between the HO/LAD of G stainforthii
at 9600m (2909m) and the LO/FAD of P. sicana at 8210ft
(~2489m). We recognize that this date is somewhat problematic
because a surface at 18.6 Ma would be located in Zone NN3.
We therefore adjust the position of the surface at 18.2 Ma. The
lower surface, in Zone M2 is difficult to position. It is estimated
at 19 Ma based on the occurrence of S. belemnos at 11310’
(3427m).

A younger unconformity at 7410ft (~2245m) is inferred from
the juxtaposition at this level of LO of O. suturalis (FAD at 15.1
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TEXT-FIGURE 20

Bathymetric distribution of the benthic foraminiferal species occurring in the Carapita Formation and not in the Cipero Formation. (Bathymetry accord-

ing to Van Morkhoven et al. 1986); *Agglutinated benthic foraminifera.

Ma) and the HO of H. ampliaperta (LAD at 14.87 Ma). The
NN4/NNS and N8/M5-N9/M6 zonal contacts are thus uncon-
formable. The lower surface of the unconformity is estimated at
15.9 Ma (applying a sedimentation rate of 47cm/ 10° yr). The
upper surface is <14.87 Ma and > LAD S. heteromorphus (13.6
Ma). It is tentatively estimated as 14.5 Ma.

Well C (WC), Tropical Oilfield

An intra-lower Miocene unconformity is inferred at level
~10830ft (~3282m). It is marked by the juxtaposition of the
HOs of C. abisectus (with LAD approximately at the

Oligocene/Miocene boundary, ~ 23 Ma) and S. dissimilis (with
LAD in mid-NN2, ~ 2 Myr younger, although not calibrated to
magnetochronology). The stratigraphic gap encompasses Zones
M1/N4, NN1 and almost entirely M2/N5 and NN2 (Text-fig.
17). The lower surface of the unconformity is tentatively esti-
mated at 23.5 Ma. Its upper surface is tentatively estimated at
19.5 Ma.

An unconformity is inferred at ~9305ft (~2820m) based on the
HOs of S. belemnos (9410ft, ~2851.5m; LAD at 18.1 Ma) and
G stainforthi (9200ft; ~2788m; LAD at 17.3 Ma). The strati-

21
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TEXT-FIGURE 21

Paleobathymetry is as follows (as in text-figs. 22-24): inner neritic: 0-30 m; middle neritic: 30-100 m; outer neritic: 100-200 m; upper bathyal: 200-600

Highest and lowest occurrences of selected benthic foraminifera species recovered from the Rio Oregano outcrop section.
m; middle bathyal: 600-1000 m; lower bathyal: 1000-2000m.
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Highest and lowest occurrences of selected benthic foraminifera species recovered from Well A.
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Highest and lowest occurrences of selected benthic foraminifera species recovered in Well B.
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Highest and lowest occurrences of selected benthic foraminifera species recovered in Well C.

graphic gap encompasses the lowermost part of Zone NN4 and
M3/N6 and the uppermost part of Zone M2/NS. The hiatus is at
least 0.8 Myr. The lower surface of the unconformity is > 18.1
Ma; the upper surface is >17.62 Ma. Without sufficient means
to constrain it, we estimate the lower surface of the
unconformtiy at 18.3 Ma and the upper surface at 17.7 Ma.

An unconformity at 8305ft (~2517m) is inferred between the
LO of P, sicana (8390ft; ~2542m; FAD at 16.4 Ma) and the HO
of H. ampliaperta (8240ft; ~2497m; LAD at 14.87 Ma). 1t lies

within Zones M4/N7 and M5/N8. In the absence of additional
data, we arbitrarily estimate the hiatus to be ~1.4 Myr, and arbi-
trarily estimate the lower surface at 16.2 Ma and the upper sur-
face at 15.5 Ma.

Asin Well A, the absence of overlap between the upper range of
H. ampliaperta and the lower range of O. suturalis implies an
unconformity between 8243ft and 8000ft (~2497m — ~2424m)
in the lower part of Zone NN5. The lower surface of the uncon-
formity (at ~2455m) is older than the FAD O. suturalis. 1t is es-
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Variations in abundance of the benthic foraminiferal epifaunal and infaunal morphotypes in the Carapita Formation, Rio Oregano outcrop section.

timated at 15.3 Ma. The upper surface is younger than the LAD
H. ampliaperta, and much older than the LAD S
heteromorphus (13.49 Ma). It is estimated at 14.5 Ma.

A younger unconformity, arbitrarily located at ~7260ft
(~2200m) is marked by the offset between the HOs of S.
heteromorphus (7520ft, 2279m; LAD at 13.49 Ma) and C.
floridanus (7000ft; ~2112m; LAD at 11.8 Ma). The strati-
graphic gap encompasses Zones M9/N12, M8/N11 and
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M7/N10. The hiatus is arbitrarily estimated at 1 Myr. The lower
surface is < 13.49 and tentatively estimated at 13 Ma. The up-
per surface is > 11.8 Ma and tentatively estimated at 12 Ma.

Paleobathymetry

A total of 69 species of benthic foraminifera were recovered
from the Cipero and Carapita Formations in outcrop sections.
Thirty species are common to both the Carapita and Cipero For-
mations (Text-fig. 18). Nine species are restricted to the Cipero
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In sample RDL-423 (a) from the Cipero Formation near the Lower/Middle Miocene boundary (N8/M5), the dominant morphotype (M) is M3 (~50%),
followed by M4 (22.7 %) and M2 (13.6 %) whereas in sample RO-29 to RO-45 (b) of the same age but from the Carapita Formation, M9 is dominant with
percent values of 80%, followed by M2 and M6 with values <10 %. In Middle Miocene (N9/M5) sample RDL-538 (c) from the Cipero Formation
morphoptype M2 is dominant (55%) whereas in sample RO-47 to RO-51 (d), M9 dominates (~60%) followed by M6 (10 %) and M2 (<10%).

Note: the sample composition shown in (b) represents an average of the composition of all samples between RO-29 and RO-45, and the sample composi-
tion in (d) represents the average of the composition of all samples between RO-47 and RO-51.

Formation (Text-fig. 19) and thirty species are exclusive to the
Carapita Formation (Text-fig. 20). Based on the bathymetric
survey (see above) the species assemblages strongly suggest
that both the Carapita (Rio Oregano, Eastern Venezuela Basin)
and the Cipero (Trinidad) Formations were deposited at bathyal
depths (Text-figs 18-20). Additionally, maximum overlap in the
paleobathymetric preferences of the taxa occurring only in the
Carapita Formation point to upper to middle bathyal ranges
(Text-fig. 20), whereas maximum overlap for the taxa occurring
only in the Cipero Formation point to deeper (middle and
lower) bathyal environments. This suggests that the Cipero For-
mation (San Fernando area) was deposited at greater depths
than the Carapita Formation (Rio Oregano area). With refer-
ence to Van Morkhoven et al. (1986) the former would have
been deposited at a depth range between 500 to 2000 m, the lat-
ter between 200 to 1000m.

Based on the bathymetric survey, the distribution of the benthic
foraminifera also indicate that the lower part of the Carapita
Formation (Zone M3/N6) in the Rio Oregano area was depos-
ited at middle bathal depth (Text-fig. 21). In the area of the

wells the N4-N6/M1-M3 zonal interval was deposited at outer
neritic to bathyal depth whereas the N7-N9/M4-MS5 zonal inter-
val was deposited at upper to middle bathyal depths (Text-figs.
22-24). Assemblages indicative of outer neritic to bathyal
depths include Nonion incisum, N. costiferum, Bolivina
imporcata, B. pisciformis, and Eggerella scabra (cf. Text-fig.
20). Assemblages indicative of upper to middle bathyal depths
comprise Cibicidoides crebbsi, C. compressus, C. incrassatus,
Rectuvigerina transversa, R. multicostata, R. striata, Uvigerina
carapitana, U. rugosa, U. mexicana, Melonis pompilioides,
Siphonina pozonensis, Eggerella bradyi, Dorothia brevis,
Cyclammina cancellata, Valvulina flexilis, Alveovalvulinella
pozonensis, Glomospira charoides, Bathysiphon carapitanus,
Sigmoilopsis schlumbergeri, Neoeponides umbonatus, and N.
parantillarum (cf. Text-figs. 17, 19).

In the Carapita Formation, the infaunal morphotypes dominate
over the epifaunal ones in the Praeorbulina glomerosa and
Globorotalia peripheroronda Zones (Zones N8/M5 and
N9/M6) with percent values oscillating between 53.6 — 80.0 %.
In contrast, in the Cipero Formation the epifaunal morphotypes
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Stratigraphic correlation between sections through the Carapita Formation across the study area.

dominate over the infaunal ones for the same zonal interval,
with values oscillating between 50.0 — 55.0 %. This is well ex-
emplified by two sets of representative assemblages from the
two formations (compare Text-figs. 26a and ¢, and 26b and d).

The abundance patterns of the morphotypes in these assem-
blages is notably different from the patterns described by
Corliss and Fois (1991) in benthic communities from the Gulf
of Mexico. For instance, in the Gulf of Mexico, morphotype
M9 reaches maximum values of 40 % (in 100 to 500m water
depth) whereas in the Carapita Formation the percentage is al-
ways >50 % (compare Text-figs. 25 and 26 with Tables 4 and
5). Morphotype M2 reaches maximum values of 10 % in the
Gulf of Mexico communities, but values >50 % in the Cipero
Formation. In addition, different morphotypes in the same as-
semblage yield contradictory information. In Sample RO-47,
values of morphotype M9 would indicate water depth of 100 to
500 m, but values of M6 suggest lower bathyal (1000-2000m)
depths (compare Text-fig. 26a and Tables 4 and 5). Morphotype
M3 with values between 5 to 10 % would indicate water depths
of 500 to 1000m; this morphotype is rare or absent in water
depths below 1000m (Table 4). However in sample RDL-423
(Cipero Formation), this morphotype constitutes almost 50 %
of the benthic assemblage. Morphotype M2 is also highly repre-
sented in Sample RDL-538, much above a percentage of 0 to 10
%, which would indicate water depths of 100 to 1000m.

The conclusions derived from morphotype analysis of benthic
foraminiferal communities in the Gulf of Mexico are clearly not
applicable to the Early and Middle Miocene assemblages of the
Carapita and Cipero Formations. Nevertheless the different rep-
resentation between the epifauna and infauna in the two forma-
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tions constitue evidence of different depositional depths, which
is congruent with conclusions derived from the bathymetric sur-
vey. Remarkably, the epifaunal-infaunal patterns found in ben-
thic foraminiferal associations of the Carapita and Cipero
Formations agree well with the observation by Corliss and Fois
(1991) in the Gulf of Mexico and Norwegian Sea, as a function
of nutrient availability.

DISCUSSION: DEPOSITIONAL HISTORY OF THE
CARAPITA FORMATION

The precise age of the Carapita Formation is established for the
first time, showing it to be a lateral correlative of the Cipero
Formation (see Sanchez et al., submitted). In the wells and out-
crop section studied here the Carapita Formation encompasses
Zones N5/M2 to N9/M6. In addition, Zone N5/M1 was
questionably identified in Well A (see Text-fig. 11).

However, the precise zonal age of its upper part below the La
Pica Formation (~1181m, ~1579m and ~812m in wells A, B and
C, respectively) remains unknown.

The same biostratigraphic succession was recovered from the
Rio Oregano outcrop section and the wells (Text-fig. 27), but
with considerable differences in thickness along the transect.
The succession is thickest (~2333m) in WB, but extremely thin
(108m) in the outcrop. Additionally, the thicknesses of discrete
biozones vary in non-linear fashion with the total thickness of
the sections. The N7/M4 zonal interval is much thinner in WA
than in WB (~103m versus ~421m) and of intermediate thick-
ness in WC (~245m), whereas the N8/M5 zonal interval is as
thick in WA as in WB (~242m) but only half this thickness in
WC (~118m). Such differences may have two explanations, ei-



Stratigraphy, vol. 11, no. 1, 2014

Temporal interpretation of the lower to middle Miocene secctions, Eastern Venezuela Basin (EVB).
Chronological Rio Oregano , ks
framework (Outcrop) WA Wh we g E
12 C5 (200-600m) (200-600m) m)
C5A s = _/
13 C5AA YN Z ———— - ~ 4129
C35AB P~ o ___ 13.7
14 CSA v wy 000-2,000 "
C Z
15 C5A 7 o = 7 fhe = =/=/114-8
D %
= <
16 bl 16.1
CjC E - 000 000
17 2 .
CSD [ e (200-600m) 17.7
18 — & arp s {18.2
CSE = =
19 e
200-60
N &) . 1197
( 3 | =
con | ¥ | % =
21 ! - - - - {20.8
CoAA 2 L
22 cB|s| P~ "~~~ £ 5= Al 7N
NO EXPOSURE (200-600m) ATA
23 . NI o o s e A, 0 o e o |
e6¢ |, //
— (200-600m)| 24.0
TEXT-FIGURE 28

Early to middle Miocene depositional history in the Eastern Venezuela Basin, based on the temporal interpretation the Carapita Formation at different lo-

calities.

ther change in sedimentation rates through time and/or occur-
rence of stratigraphic gaps (Aubry 1995). As shown by the
temporal analyses, changes in sedimentation rates (over the
long term) can be ruled out. Only in one section (Well B) was it
possible to determine satisfactorily sedimentation rates, which
were high (50 to 80cm/10° yr calculated here) in agreement
with previous work (De Cabrera and De Macquhae 1990). In
this well, the sedimentation rate curves do not show inflexions
that would support sharp changes in rates. The temporal inter-
pretations indicate that the sections are highly discontinuous
(Text-fig. 28). Although no lithological breaks were observed
in the field, the Oregano section comprises at least two strati-
graphic gaps. It is possible that other unconformities occur,
which cannot be documented because of the two inaccessible
intervals in the section (see above). The Miocene succession
recovered from WA is highly discontinuous, and contains two
major stratigraphic gaps (Text-fig. 15), as does the correlative
succession recovered from WB in which two unconformities
were inferred (Text-fig. 16). The Miocene succession recovered
from WC was even more discontinuous, with four principal un-
conformities (Text-fig. 17).

It is important to recognize that, whereas our delineation of un-
conformities is strongly supported by the data, there are uncer-
tainties on the dating of many unconformable surfaces. Only in
one well (WB) was it possible to use sedimentation rates to cal-
culate dates, rather than estimate them. We recognize that the
temporal placements of some surfaces were arbitrarily esti-
mated. However, despite the imprecision of our determinations
a consistent stratigraphic pattern occurs, which is similar to pat-
terns that have been documented elsewhere (see below).

To determine the significance of the stratigraphic gaps, it is nec-
essary to place the sections in a paleobathymetric context. The
four sections are now land sections in a strongly tectonized area;
determination of paleobathymetry requires use of a proxy for
water depth. Our results agree with previous interpretations that
the Carapita was a bathyal deposit (see above), but, importantly,
we have shown that paleodepth differed at the four locations
studied here, and also changed through time at each location
(Text-fig. 28).

Benthic foraminiferal distribution patterns reveal a comprehen-
sive bathymetric history of the eastern Venezuela Basin
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(Text-fig. 28). The shallower sites (WA, WB) were outer neritic
to upper bathyal depths during the Early Miocene (24.0 to 20.5
Ma). They deepened to middle bathyal depths during the late
Early Miocene from 18.8 to 15.5, but shallowed from middle to
upper bathyal depths in the early Middle Miocene (15.0 to 11.7
Ma). The intermediate site (Rio Oregano) remained at lower
bathyal depths through Early to Middle Miocene (24 to 11.7
Ma). The deeper site (WC) was at outer neritic /upper bathyal
depths during the Early Miocene (24 to 23.2 Ma). It deepened
to upper to middle bathyal depths between 19.0 to 18.1 Ma, fur-
ther deepened to lower bathyal depths between 17.1 to 14.9 Ma,
and then shallowed slightly to lower to middle bathyal depths in
the early Middle Miocene (11.7 to 11 Ma).

It is remarkable that changes in water depths as determined
from the benthic foraminifera (Fig. 28) are associated with
stratigraphic gaps. It is unlikely that changes in water depth at
upper and middle bathyal locations would have been related to
global changes in sea level, i.e., from Neogene glacioeustasy in-
ferred from deep sea oxygen isotope studies combined with the
marginal record of sequence boundaries (Miller et al. 2011). In
fact, there is clearly no association between inferred
glacio-eustatic events (red lines in Text-fig. 28) and either
changes in paleodepth or the occurrence of unconformities in
the sections studied here. It is more likely that changes in
paleobathymetry and developments of stratigraphic gaps were
controlled by structuring in a tectonically active basin (Di
Croce et al. 2000).

Without access to seimic data in the studied area, a further inter-
pretation of our record is difficult because the wells cannot be
placed in a broader stratigraphic architectural context. How-
ever, a dense seismic stratigraphic framework has been devel-
oped for the eastern Venezuela Basin, and a sequence
stratigraphic framework has been established for the Carapita
Formation from the study of multiple wells (Sanchez et al.
2010). Using seismic data and corelogs, it would be possible to
relate the Miocene successions in our three wells to Sanchez et
al.’s sequence stratigraphic framework of the same stratigraphic
unit. Of fundamental interest would be to determine whether
the hiatuses in our sections correlate with the sequence bound-
aries identified by these authors. They delineated three Lower
Miocene and six Middle Miocene sequences (Sanchez et al.
2010, p. 7; although five and seven sequences, respectively, are
shown in their figure 3), commenting that the Lower Miocene
sequences were easily identified by means of stacking patterns
whereas the Middle Miocene sequences were difficult to iden-
tify from monotonous corelogs due to their deposition at greater
depths. They delineated Middle Miocene sequences based on
micropaleontological data. They also noted that biostrati-
graphic resolution was too low to date sequence boundaries.
The sequence stratigraphic work in Sanchez et al. (2010) is in-
sufficiently detailed to be tied to our work. However, there is a
strong likelihood that the unconformities delineated in our four
sections correspond to some of the sequence boundaries delin-
eated by these authors. If this is correct, a major difference is
readily seen between the two works concerning the treatment of
unconformities. In Sanchez et al. (2010) an unconformity is re-
garded as a stratigraphic feature, merely indicative of a strati-
graphic gap and without time significance. In contrast, we
recognize an unconformity as a stratigraphic feature represent-
ing a lapse of time (hiatus) between two, datable stratigraphic
horizons. Without consideration of the two surfaces, there can-
not be satisfactory stratigraphic and genetic correlation be-
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tween unconformities (Aubry 1991). A next step for sequence
stratigraphic investigations is to incorporate hiatuses as a true
component of the stratigraphic record, i.e., to recognize equal
geological significance to recorded and unrecorded time.

The occurrence of substantial hiatuses in outer neritic to middle
bathyal sections has now been documented in eastern Vene-
zuela, Jamaica, the eastern Gulf of Mexico (Aubry 1993a, b,
and unpublisged data). Moreover, all these records show an or-
ganized pattern, with overlapping hiatuses, and bounding sur-
faces of similar ages extending over long distances. If all
hiatuses are related to sequence boundaries, as we suggest, there
are strong reasons to suspect that tectonics play a greater role
than glacioeustasy in shaping the architecture of the Neogene
stratigraphic record on margins than has been acknowledged
until now.

CONCLUSIONS

We have established the biostratigraphy of one land section (Rio
Oregano) and three wells drilled through the Carapita Forma-
tion in the eastern Venezuela Basin. We show that the four suc-
cessions belong to the same biozonal interval from Lower
Miocene (?Zone N4/M1) to Middle Miocene (Zone N9/M6).
We further show that the four successions are discontinuous in-
cluding hiatuses > 1 Myr.

We have also determined the paleodepth at each section/well
based on a literature survey of species depth preferences, and
also through the comparison of abundance patterns of
foraminifera as grouped by morphology. We confirm that the
Carapita Formation is essentially a bathyal deposit, but that
depth has changed through time at different locations varying
from outer neritic (Early Miocene only) to middle bathyal.

We show that changes in paleodepth are associated with hia-
tuses. As no relationship is seen between Neogene glacio-
custatic events and hiatuses in our sections, we conclude that
tectonic forcing is at the origin of both hiatuses and changes in
water depth. Comparison with other regions leads us to suggest
that tectonics may have played a stronger control on strati-
graphic architecture than acknowledged.

Finally this study shows once again the relevance of biostrati-
graphy to stratigraphic analysis, not merely as a mean to cali-
brate sequence boundaries to the time scale as commonly done,
but as a means of assessing stratigraphic completeness, deter-
mining the hiatus between unconformable but concordant hori-
zons, and dating these interfaces. The ubiquitous applicability
of biostratigraphy makes it an ideal tool to begin to ask, in con-
cert with other appropriate tools, one of the most fundamental
questions of relevance to sequence stratigraphy—that of the re-
lationship between subaerial unconformities (the shallow water
part of sequence boundaries) and unconformities at greater
depth where strata are concordant.
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TABLE 1
Samples analyzed in this study.

Well A Well A Well B Well B Well C Well C Oregano section Ciper
(ft) (m) (ft) (m) (ft) (m) Sample meter Sample
2300-2310 | ~697 - 700 2100-2150 ~636 - 651.5 4380-4410 ~1327 - 1336 RO-89 | 111 RDL-529
2450-2480 | ~742-751.5 2350-2400 ~2830 — 2836 4500-4530 ~1364 - 1373 RO-87 | 109 RDL-538
2550-2600 | ~773 - 788 2700-2750 ~818 — 833 4640-4670 ~1406 - 1415 RO-85 | 107 RDL-423
2700-2750 | ~818 - 833 3000-3050 ~909 - 924 4800-4830 ~1454.5-1464 | RO-83 | 105 RDL-544
2850-2900 | ~864 — 879 3350-3400 ~1015—1030 5020-5050 ~1521 - 1530 RO-81 | 103 RDL-800
3110-3140 | ~942 -951.5 3620-3650 ~1097 - 1106 5230-5260 ~1585 - 1594 RO-79 | 101 RDL-804
3520-3550 | ~1067 — 1076 3800-3820 ~1151-1157.5 | 5410-5440 ~1639 — 1648 RO-77 | 99 RDL-563
3700-3709 | ~1121 1124 4000-4020 ~1212-1218 5600-5650 ~1697-1712 RO-75 | 97 RDL-540
3850-3880 | ~1167-1176 4200-4220 ~1273 - 1279 5830-5860 ~1767 - 1776 RO-73 | 95 RDL-553
4090-4120 | ~1239 — 1248 4600-4620 ~1394 - 1400 6020-6030 ~1824 - 1827 RO-71 | 93 RDL-558
4231-4260 | ~1282 - 1291 4880-4890 ~1479 — 1481 6210-6220 ~1882 — 1885 RO-69 | 91 RDL-802
4390-4410 | ~1330 1336 5110-5140 ~1548 - 1557.5 | 6450-6459 ~1954.5-1957 | RO-67 | 89 RDL-808
4570-4590 | ~1385 1391 5880-5910 ~1782-1791 6650-6700 ~2015 —2030 RO-55 | 87 RDL-2859
4650-4680 | ~1409 — 1418 6090-6130 ~1845 - 1857.5 | 6800-6850 ~2061 - 2076 RO-63 | 85 RDL-2873
5180-5210 | ~1570 - 1579 6200-6210 ~1879 — 1882 7000-7020 ~2121-2127 RO-61 | 83 RDL-2865
5240-5260 | ~1589 — 1594 6600-6630 ~2000 — 2009 7250-7280 ~2197 — 2206 RO-59 | 81 RDL-2931
5510-5540 | ~1670 - 1679 6810-6840 ~2064 - 2073 7400-7450 ~2242 -2257.5 | RO-57 | 79 RDL-2932
5660-5690 | ~1715-1724 7020-7050 ~2127-2136 7520-7530 ~2279 - 2282 RO-55 | 77 RDL-2933
5900-5920 | ~1788 — 1794 7210-7240 ~2185-2194 7640-7670 ~2315-2324 RO-53 | 75 RDL-2934
6240-6270 | ~1891 — 1900 7410-7440 ~2245-2254.5 | 7880-7900 ~2388 - 2394 RO-51 | 73
6390-6410 | ~1936 — 1942 7620-7650 ~2309 2318 8000-8050 ~2424 — 2439 RO-49 | 71
6500-6530 | ~1970 - 1979 7810-7840 ~2367 - 2376 8240-8270 ~2497 - 2506 RO-47 | 63
6656-6670 | ~2017 —2021 8210-8230 ~2489 — 2494 8390-8420 ~2542 -2551.5 | RO-45 | 61
6770-6775 | ~2051 — 2053 8380-8400 ~2539 - 2545 8690-8720 ~2633 - 2642 RO-43 | 43
7040-7050 | ~2133 - 2136 8610-8640 ~2609 — 2618 8890-8820 ~2700 RO-41 | 41
7220-7230 | ~2188 - 2191 8820-8850 ~2673 - 2682 9050-9080 ~2742-27.51.5 | RO-39 | 39
7380-7410 | ~2236 - 2245 9000-9030 ~2727-2736 9200-9230 ~2788 - 2797 RO-37 | 37
7520-7540 | ~2279 — 2285 9200-9220 ~2788 — 2794 9410-9440 ~2851.5-2861 | RO-35 | 35
7600-7610 | ~2303 - 2306 9400-9420 ~2848 — 2854.5 | 9680-9710 ~2933 - 2942 RO-33 [ 33
7700-7710 | ~2333 — 2336 9600-9620 ~2909 — 2915 10040-10070 | ~3042-3051.5 | RO-31 | 31
7820-7840 | ~2370 - 2376 9800-9820 ~2967 - 2976 10270-10290 | ~3112-3118 RO-29 | 29
8150-8170 | ~2470 — 2476 10020-10050 ~3091 — 3045 10410-10440 | ~31545-3164 | RO-27 | 27
8430-8440 | ~2554.5 -2557.5 | 10210-10240 ~3094 - 3103 10700-10750 | ~3242-3257.5 | RO-25 | 25
8550-8560 | ~2591 —2594 10410-10440 ~3154,1 -3164 | 10830-10840 | ~3282 3285 RO-23 | 23
8780-8790 | ~2661 — 2664 10620-10650 ~3218 - 3227 10900-10950 | ~3303 — 3318 RO-21 | 21
9000-9006 | ~2727 2729 10800-10830 ~3273 — 3282 RO-19 | 19
9200-9210 | ~2788 — 2791 11020-11050 ~3334 - 3348 RO-17 | 17
9340-9360 | ~2830 - 2836 11220-11240 ~3400 - 3757.5 RO-15 | 15
9500-9520 | ~2879 — 2885 11300-11310 ~3424 — 3427 RO-13 | 13
9660-9670 | ~2927 - 2930 11400-11405 ~3454.5 3456 RO-11 | 11
9735-9740 | ~2950-2951.5 11500-11510 ~3485 — 3488 RO-9 9

11600-11610 ~3515-3518 RO-7 g

11750-11760 ~3561 — 3564 RO-5 3

RO-3 3
RO-1 1

methods for this work, and to W. A. Berggren, L. Collins and
M. Katz for their helpful comments and discussion. We thank
K. G. Miller and R. D. Olsson for critical review of an early ver-
sion of the paper, and Carlos Jaramillo for his review of this
manuscript and his thoughtful comments.
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Classification of of benthic foraminifera from the Carapita and Cipero Formations into morphotypes based on morphotype designation by Corliss and

Fois 1991. Epifaunal morphotypes.
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APPENDIX 1B

o) D2IUAIOMI "4
fe) 1810anf *4
o) stpxalf A
sngaadns <4
(o) utrpng *f

.-5;. q JUEN Vz
s g
vaon s

mnSiang
sl
Mpmoyns
DIIDIOD

janzatuaa o
SISUIDIINLY] o]
wnsul g
wniafusos
wnanpppunand <y
dapsadund <\
snsourdsisog gy
susoppdodgns -
13aagpay -1

TYVYVYVVYVYRENY

e Lt l-hv
suutofip 0

) saproamy 1)
() 1y0OLGING D)
optss of

() DAGDOS

Inano )
() % idnana ¥

Ah A AAA

(o) stsuanozod 'p
(v) SLIDINS2001 7))

sHy g N

SUDIUAPIIIO ]

Y

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVY

ANOZ = w LLlal « | ~ | 1]l o T
VHAAINIAVHOA = il ] I T TR L. " P -
DINOLANY'1d & o £ o = = = ==l = g o
i swva | 3LVl | ATav3 v 31001 .
2
=
- osma|  3N3O0INd 3INIO0IN an390910

Species range for some of the commonly represented genera of benthic foraminifera. Ranges from Hedberg (1937), Cushman and Renz (1945), Renz
(1948), Phleger and Parker (1951), van Morhoven, Berggren and Ewards (1986), Whittaker (1988) and Robertson (1988). (*) Agglutinated benthic

foraminifera.

37




38



